Job Openings
Machine Learning Research Scientist / Research Engineer, Post-Training
About the job Machine Learning Research Scientist / Research Engineer, Post-Training
Job Title: Machine Learning Research Scientist / Research Engineer, Post-Training
Job Location: United States
Job Location Type: Hybrid
Job Contract Type: Full-time
Job Seniority Level: Internship
Scale works with the industry’s leading AI labs to provide high quality data and accelerate progress in GenAI research. We are looking for Research Scientists and Research Engineers with expertise in LLM post-training (SFT, RLHF, reward modeling). This role will focus on optimizing data curation and algorithmic improvements to enhance LLM capabilities in core areas such as instruction following, factuality, coding, multilingual and multimodal understanding.
In this role, you will develop novel methods to improve the alignment and generalization of large-scale generative models. You will collaborate with researchers and engineers to define best practices in data-driven AI development. You will also partner with top foundation model labs to provide both technical and strategic input on the development of the next generation of generative AI models.
You will:
Please reference the job posting's subtitle for where this position will be located. For pay transparency purposes, the base salary range for this full-time position in the locations of San Francisco, New York, Seattle is:
$176,000—$255,000 USD
PLEASE NOTE: Our policy requires a 90-day waiting period before reconsidering candidates for the same role. This allows us to ensure a fair and thorough evaluation of all applicants.
About Us:
At Scale, we believe that the transition from traditional software to AI is one of the most important shifts of our time. Our mission is to make that happen faster across every industry, and our team is transforming how organizations build and deploy AI. Our products power the world's most advanced LLMs, generative models, and computer vision models. We are trusted by generative AI companies such as OpenAI, Meta, and Microsoft, government agencies like the U.S. Army and U.S. Air Force, and enterprises including GM and Accenture. We are expanding our team to accelerate the development of AI applications.
We believe that everyone should be able to bring their whole selves to work, which is why we are proud to be an inclusive and equal opportunity workplace. We are committed to equal employment opportunity regardless of race, color, ancestry, religion, sex, national origin, sexual orientation, age, citizenship, marital status, disability status, gender identity or Veteran status.
We are committed to working with and providing reasonable accommodations to applicants with physical and mental disabilities. If you need assistance and/or a reasonable accommodation in the application or recruiting process due to a disability, please contact us at . Please see the United States Department of Labor's Know Your Rights poster for additional information.
We comply with the United States Department of Labor's Pay Transparency provision.
PLEASE NOTE: We collect, retain and use personal data for our professional business purposes, including notifying you of job opportunities that may be of interest and sharing with our affiliates. We limit the personal data we collect to that which we believe is appropriate and necessary to manage applicants’ needs, provide our services, and comply with applicable laws. Any information we collect in connection with your application will be treated in accordance with our internal policies and programs designed to protect personal data. Please see our privacy policy for additional information.
In this role, you will develop novel methods to improve the alignment and generalization of large-scale generative models. You will collaborate with researchers and engineers to define best practices in data-driven AI development. You will also partner with top foundation model labs to provide both technical and strategic input on the development of the next generation of generative AI models.
You will:
- Research and develop novel post-training techniques, including SFT, RLHF, and reward modeling, to enhance LLM core capabilities in areas of instruction following, factuality, coding, multilingual and multimodal understanding.
- Design and experiment new approaches to preference optimization.
- Analyze model behavior, identify weaknesses, and propose solutions for bias mitigation and model robustness.
- Publish research findings in top-tier AI conferences.
- Ph.D. or Master's degree in Computer Science, Machine Learning, AI, or a related field.
- Deep understanding of deep learning, reinforcement learning, and large-scale model fine-tuning.
- Experience with post-training techniques such as RLHF, preference modeling, or instruction tuning.
- Excellent written and verbal communication skills
- Published research in areas of machine learning at major conferences (NeurIPS, ICML, ICLR, ACL, EMNLP, CVPR, etc.) and/or journals
- Previous experience in a customer facing role.
Please reference the job posting's subtitle for where this position will be located. For pay transparency purposes, the base salary range for this full-time position in the locations of San Francisco, New York, Seattle is:
$176,000—$255,000 USD
PLEASE NOTE: Our policy requires a 90-day waiting period before reconsidering candidates for the same role. This allows us to ensure a fair and thorough evaluation of all applicants.
About Us:
At Scale, we believe that the transition from traditional software to AI is one of the most important shifts of our time. Our mission is to make that happen faster across every industry, and our team is transforming how organizations build and deploy AI. Our products power the world's most advanced LLMs, generative models, and computer vision models. We are trusted by generative AI companies such as OpenAI, Meta, and Microsoft, government agencies like the U.S. Army and U.S. Air Force, and enterprises including GM and Accenture. We are expanding our team to accelerate the development of AI applications.
We believe that everyone should be able to bring their whole selves to work, which is why we are proud to be an inclusive and equal opportunity workplace. We are committed to equal employment opportunity regardless of race, color, ancestry, religion, sex, national origin, sexual orientation, age, citizenship, marital status, disability status, gender identity or Veteran status.
We are committed to working with and providing reasonable accommodations to applicants with physical and mental disabilities. If you need assistance and/or a reasonable accommodation in the application or recruiting process due to a disability, please contact us at . Please see the United States Department of Labor's Know Your Rights poster for additional information.
We comply with the United States Department of Labor's Pay Transparency provision.
PLEASE NOTE: We collect, retain and use personal data for our professional business purposes, including notifying you of job opportunities that may be of interest and sharing with our affiliates. We limit the personal data we collect to that which we believe is appropriate and necessary to manage applicants’ needs, provide our services, and comply with applicable laws. Any information we collect in connection with your application will be treated in accordance with our internal policies and programs designed to protect personal data. Please see our privacy policy for additional information.
Lifelancer ( https://lifelancer.com ) is a talent-hiring platform in Life Sciences, Pharma and IT. The platform connects talent with opportunities in pharma, biotech, health sciences, healthtech and IT domains.
For more details and to find similar roles, please check out the below Lifelancer link.
https://lifelancer.com/jobs/view/f9f657d4c955591391a439ca2cdaca6f